Comparison Errors of the Image Conductivity Distribution Reconstructed by Direct and Indirect Algorithms in Electrical Tomography

نویسنده

  • Mykhaylo DOROZHOVETS
چکیده

In this paper the two indirect conductivity distribution reconstruction algorithms in electrical tomography are presented. The first algorithm based on the previous resistivity reconstruction and the second one based on the usage of the inverse measured voltages. Efficiency of the presented algorithms is compared with the efficiency of the direct conductivity distribution reconstruction algorithm. Modeling results shows that due to better linearity the both indirect algorithms always provides better convergence of the iterative reconstruction process than direct algorithm. In indirect algorithms do not need to know exactly the level of initial approach of the conductivity distribution, because this level almost never affects the iterative process and initial approaching of the conductivity can always be uniform distribution of size 1 S·m. Therefore (at least in the first iterations) it is advisable to use indirect algorithms. Copyright © 2013 IFSA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

Electrode Misalignment Correction Algorithms In Magnetic Resonance Electrical Impedance Tomography

M. J. Hamamura, L. T. Muftuler, O. Birgul, O. Nalcioglu Tu & Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States Purpose In Magnetic Resonance Electrical Impedance Tomography (MREIT) electrical currents are injected into an object and the resulting magnetic flux density distribution measured using MRI. These MRI measurements are then used to reconstruct ...

متن کامل

Employing dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype

Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...

متن کامل

Shearlet-Based Adaptive Noise Reduction in CT Images

The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...

متن کامل

A comparison framework for temporal image reconstructions in electrical impedance tomography.

Electrical impedance tomography (EIT) provides low-resolution images of internal conductivity distributions, but is able to achieve relatively high temporal resolutions. Most EIT image reconstruction algorithms do not explicitly account for the temporal constraints on the measurements or physiological processes under investigation. Instead, algorithms typically assume both that the conductivity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013